CLEMENTMachine Learning Methods for Malware Recognition based on Semantic Behaviours


Malware refers to any software accessing or being installed in a system without the authorisation of administrators. Various malware has been widely used for cyber-criminals to accomplish their evil intentions and goals. To combat the increasing amount and reduce the threat of malicious programs, a novel deep learning framework, which uses NLP techniques for reference, combines CNN and LSTM neurones to capture the locally spatial correlations and learn from sequential longterm dependency is proposed. Hence, high-level abstractions and representations are automatically extracted for the malware classification task. The classification accuracy improves from 0.81 (best one by Random Forest) to approximately 1.0.



Software And Hardware

• Hardware: Processor: i3 ,i5 RAM: 4GB Hard disk: 16 GB • Software: operating System : Windws2000/XP/7/8/10 Anaconda,jupyter,spyder,flask Frontend :-python Backend:- MYSQL