Predicting Flight Delays with Error Calculation using Machine Learned Classifiers


Flight delay is a major problem in the aviation sector. During the last two decades, the growth of the aviation sector has caused air traffic congestion, which has caused flight delays. Flight delays result not only in the loss of fortune also negatively impact the environment. Flight delays also cause significant losses for airlines operating commercial flights. Therefore, they do everything possible in the prevention or avoidance of delays and cancellations of flights by taking some measures. In this paper, using machine learning models such as Logistic Regression, Decision Tree Regression, Bayesian Ridge, Random Forest Regression and Gradient Boosting Regression we predict whether the arrival of a particular flight will be delayed or not.



Software And Hardware

• Hardware: Processor: i3 ,i5 RAM: 4GB Hard disk: 16 GB • Software: operating System : Windws2000/XP/7/8/10 Anaconda,jupyter,spyder,flask Frontend :-python Backend:- MYSQL