Attention-based Atrous Convolutional Neural Networks: Visualisation and Understanding Perspectives of Acoustic Scenes


The goal of Acoustic Scene Classification (ASC) is to recognise the environment in which an audio waveform has been recorded. Recently, deep neural networks have been applied to ASC and have achieved state-of-the-art performance. However, few works have investigated how to visualise and understand what a neural network has learnt from acoustic scenes. Previous work applied local pooling after each convolutional layer, therefore reduced the size of the feature maps. In this paper, we suggest that local pooling is not necessary, but the size of the receptive field is important. We apply atrous Convolutional Neural Networks (CNNs) with global attention pooling as the classification model. The internal feature maps of the attention model can be visualised and explained. On the Detection and Classification of Acoustic Scenes and Events (DCASE) 2018 dataset, our proposed method achieves an accuracy of 72.7 %, significantly outperforming the CNNs without dilation at 60.4 %. Furthermore, our results demonstrate that the learnt feature maps contain rich information on acoustic scenes in the time-frequency domain.



Software And Hardware

• Hardware: Processor: i3 ,i5 RAM: 4GB Hard disk: 16 GB • Software: operating System : Windws2000/XP/7/8/10 Anaconda,jupyter,spyder,flask Frontend :-python Backend:- MYSQL