Evolving Unsupervised Deep Neural Networks for Learning Meaningful Representations


Deep learning (DL) aims at learning the meaningful representations. A meaningful representation gives rise to significant performance improvement of associated machine learning (ML) tasks by replacing the raw data as the input. However, optimal architecture design and model parameter estimation in DL algorithms are widely considered to be intractable. Evolutionary algorithms are much preferable for complex and nonconvex problems due to its inherent characteristics of gradient-free and insensitivity to the local optimal. In this paper, we propose a computationally economical algorithm for evolving unsupervised deep neural networks to efficiently learn meaningful representations, which is very suitable in the current big data era where sufficient labeled data for training is often expensive to acquire. In the proposed algorithm, finding an appropriate architecture and the initialized parameter values for an ML task at hand is modeled by one computational efficient gene encoding approach, which is employed to effectively model the task with a large number of parameters. In addition, a local search strategy is incorporated to facilitate the exploitation search for further improving the performance. Furthermore, a small proportion labeled data is utilized during evolution search to guarantee the learned representations to be meaningful. The performance of the proposed algorithm has been thoroughly investigated over classification tasks. Specifically, error classification rate on MNIST with 1.15% is reached by the proposed algorithm consistently, which is considered a very promising result against state-of-the-art unsupervised DL algorithms.



Software And Hardware

• Hardware: Processor: i3 ,i5 RAM: 4GB Hard disk: 16 GB • Software: operating System : Windws2000/XP/7/8/10 Anaconda,jupyter,spyder,flask Frontend :-python Backend:- MYSQL