Blockchain Empowered Resource Trading in Mobile Edge Computing and Networks









Abstract

This paper proposes a new device-to-device edge computing and networks (D2D-ECN) framework which facilitates low-latency execution of real-time Internet-of Things applications through computation offloading with minimal overhead. Our framework accounts for key challenges of D2D-ECN in terms of the efficiency of the resource management and the resulting security concerns caused by lacking trustworthy between task owners and resource providers. In particular, we propose to use a blockchain-empowered framework for implementing resource trading and task assigment as the smart contracts. However, the existing Proof-of-Work (PoW) is impractical for the resource-constrained IoT devices due to high computational complexity of the mining process. Thus, we present a reputation-based consensus mechanism called proof-of-reputation (PoR), where the device with the highest reputation score is responsible for packaging the resource transactions and reputation records in the blockchain. Furthermore, we evaluate the reputation score of each device according to the current computation performance and history reputation. Security, feasibility analysis and numerical results show that our proposed computation offloading scheme can be deployed in the decentralized D2D-ECN system safely and effectively.


Modules


Algorithms


Software And Hardware

• Hardware: Processor: i3 ,i5 RAM: 4GB Hard disk: 16 GB Raspberry pi/arduino,other hardware components (please call) • Software: operating System : Windws2000/XP/7/8/10 Anaconda,jupyter,spyder,flask Frontend :-python Backend:- MYSQL