Comparative Study to Identify the Heart Disease Using Machine Learning Algorithms


Nowadays, heart disease is a common and frequently present disease in the human body and it's also hunted lots of humans from this world. Especially in the USA, every year mass people are affected by this disease after that in India also. Doctor and clinical research said that heart disease is not a suddenly happen disease it's the cause of continuing irregular lifestyle and different body's activity for a long period after then it's appeared in sudden with symptoms. After appearing those symptoms people seek for a treat in hospital for taken different test and therapy but these are a little expensive. So awareness before getting appeared in this disease people can get an idea about the patient condition from this research result. This research collected data from different sources and split that data into two parts like 80% for the training dataset and the rest 20% for the test dataset. Using different classifier algorithms tried to get better accuracy and then summarize that accuracy. These algorithms are namely Random Forest Classifier, Decision Tree Classifier, Support Vector Machine, k-nearest neighbor, Logistic Regression, and Naive Bayes. SVM, Logistic Regression, and KNN gave the same and better accuracy as other algorithms. This paper proposes a development that which factor is vulnerable to heart disease given basic prefix like sex, glucose, Blood pressure, Heart rate, etc. The future direction of this paper is using different devices and clinical trials for the real-life experiment.



Software And Hardware