Predicting Workflow Task Execution Time in the Cloud using A Two-Stage Machine Learning Approach









Abstract

Abstract—Many techniques such as scheduling and resource provisioning rely on performance prediction of workflow tasks for varying input data. However, such estimates are difficult to generate in the cloud. This paper introduces a novel two-stage machine learning approach for predicting workflow task execution times for varying input data in the cloud. In order to achieve high accuracy predictions, our approach relies on parameters reflecting runtime information and two stages of predictions. Empirical results for four real world workflow applications and several commercial cloud providers demonstrate that our approach outperforms existing prediction methods. In our experiments, our approach respectively achieves a best-case and worst-case estimation error of 1.6% and 12.2%, while existing methods achieved errors beyond 20% (for some cases even over 50%) in more than 75% of the evaluated workflow tasks. In addition, we show that the models predicted by our approach for a specific cloud can be ported with low effort to new clouds with low errors by requiring only a small number of executions. Index Terms—Performance Prediction, Workflow Tasks Execution Time, Machine Learning


Modules


Algorithms


Software And Hardware

• Hardware: Processor: i3 ,i5 RAM: 4GB Hard disk: 16 GB • Software: operating System : Windws2000/XP/7/8/10 Anaconda,jupyter,spyder,flask Frontend :-python Backend:- MYSQL